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1. Introduction

Gauge theory on noncommutative spaces has attracted considerable interest in recent
years. In particular, topologically nontrivial solutions such as instantons were found on the
noncommutative plane. They are conveniently described in terms of projective modules
over the algebraA of functions on the noncommutative space. Additional motivation is
provided by the appearance of noncommutative gauge theory as an effective theory of D-
branes in string theory. This led to an interpretation of the nontrivial solutions of gauge
theory on noncommutative flat space in terms of nonperturbative configurations in the D-
brane background, see e.g.[1].

On the other hand, gauge theory on non-flat noncommutative spaces is not very well
understood. A particularly nice class of such spaces are the so-called fuzzy spaces, the
simplest example being the fuzzy sphere[2]. Understanding field theory and in particular
gauge theory on fuzzy spaces is important for several reasons. First, the fuzzy spaces
provide a nice regularization of field theory, because they admit only finitely many degrees
of freedom. This provides an alternative to lattice regularization, with the advantage of
preserving a large symmetry group[3,4]. While much work has been done for the fuzzy
sphere, the higher-dimensional spaces such as fuzzyCPn are largely unexplored.

The fuzzy spaces also arise in string theory. For example, the fuzzy sphere and itsq-
deformed version appear as a D-brane in theSU(2) WZW model, as discussed by several
authors[5,6]; see also[7] and references therein. In fact, many fuzzy spaces investigated
so far can be considered asD-branes on group manifolds[8]. Moreover, gauge theory on
the fuzzy sphere appears as an effective theory of the D-branes inS3, in thek→∞ limit
of the SU(2)k WZW model at levelk. Furthermore, fuzzy spaces also arise as solutions
of the IKKT matrix model[9,10]. It is therefore natural to ask for a proper geometrical
description and interpretation of such a system, in particular of the topologically nontrivial
configurations.

Topological aspects of field theory on the fuzzy sphere have first been discussed in[11].
The formulation as projective modules has been elaborated explicitly for the fuzzy sphere
in [12–14], and an alternative approach using matrix models was given in[15].

In Ref. [16,17] the authors have investigated the Dirac operators on the fuzzy sphere
which have been proposed in[11,18,19]with respect to their differences, and their relation
to topologically nontrivial configurations and the fermion doubling problem have been
studied in[20,21].

For physical applications, it is clearly desirable to consider spaces of dimension 4 and
higher. The simplest higher-dimensional fuzzy spaces are fuzzyCP2 andCPn, which have
been studied in[4,22–24].

In this paper, we consider fuzzyCP2 andCPn in more detail, and we present a simple
formulation of monopole bundles on fuzzyCPn using projective modules. We also introduce
a suitable differential calculus, which allows to compute the canonical connection and field
strength explicitly. The corresponding Chern classes are calculated. As in the case of the
fuzzy sphere, the Chern numbers are integers only in the commutative limit. For related
work on a fuzzy four-sphere see[25].

The outline of this paper is as follows. InSection 2, the geometry of classicalCPn

is formulated using two different approaches. The first is in terms of (co)adjoint orbits
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of su(n+ 1), and the second using a generalized Hopf fibration. Both lead to a useful
characterization in terms of (n+ 1)× (n+ 1) matrices satisfying a quadratic characteristic
equation. For better readability we first present the case ofCP2, and then the general case
for CPn separately.

In Section 3, the fuzzy spacesCP2
N andCPn

N are discussed from these two points of view,
leading again to a quadratic characteristic equation for algebra-valued (n+ 1)× (n+ 1)
matrices. This encodes the commutation relations of the coordinate algebra in a compact
way. In particular, the Hopf fibration is quantized in terms of a Fock space representation.

In Section 4, we give a construction of the projective modules corresponding to monopole
bundles for fuzzyCPn

N . This is done using an explicit form of the projection operators. We
also explain how a section of the constructed line bundles corresponds to a complex scalar
field. A similar construction for the classical case ofS3 → S2 has been given by Landi in
[26,27].

In Section 5, a differential calculus is constructed, which in the fuzzy case involves
more degrees of freedom than in the classical case. This is again typical for fuzzy spaces,
and we explain in what sense the classical calculus is recovered in the commutative limit.
This calculus is then used to compute the field strength and Chern class for the monopole
bundles. We show that the usual (integer) Chern numbers are recovered in the limit of large
N.

2. The geometry ofC Pn

We will discuss two descriptions ofCPn here. The first is in terms of (co)adjoint orbits
of su(n+ 1), and the second is based on the generalized Hopf fibrationU(1)→ S2n+1 →
CPn. Both are manifestly covariant underSU(n+ 1), which is maintained in their quanti-
zation as fuzzyCPn.

2.1. Adjoint orbits

In general, an adjoint orbit of a (finite-dimensional) matrix Lie groupGwith Lie algebra
g is given in terms of somet ∈ g as

O(t) = {gtg−1; g ∈ G} ⊂ g. (1)

ThenO(t) can be viewed as a homogeneous space:

O(t) ∼= G

Kt

. (2)

HereKt = {g ∈ G : [g, t] = 0} is the stabilizer oft, which determines the nature of the
spaceO(t). Any such conjugacy class is invariant under the adjoint action ofG. “Regular”
conjugacy classes are those withKt being the maximal torus, and have maximal dimension
dim(O(t)) = dim(G)− rank(G). Here we are interested in degenerate orbits such asCP2

or CPn. They correspond to degeneratet, and have dimension dim(O(t)) = dim(G)−
dim(Kt).
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A nice way to characterize the type of the orbit (for matrix Lie groups) is through its
characteristic equationχ(Y ) = 0 for Y ∈ O(t), which is invariant under conjugation and
therefore depends only on the eigenvalues oft.

For example, in order to obtainCP2 = SU(3)/(SU(2)× U(1)), we should choose the
matrix t ∈ g ∼= {Y ∈ Mat(3,C);Y † = Y, tr(Y ) = 0} with only two distinct eigenvalues. A
natural choice for an element of the adjoint orbit is hencet = diag(−1,−1,2), so that the
stabilizer isKt = SU(2)× U(1). The normalization of the matrixt defines the scale of the
resultingCP2, which is irrelevant for the discussion here.1

The characteristic equation forCP2 is therefore quadratic, and has the form

χ(Y ) = (Y + 1)(Y − 2)= 0. (3)

This equation characterizesCP2 as submanifold in the embedding spaceR
8. We will see

that an analogous characteristic equation holds for fuzzyCPn.
This construction ofCP2 can also be understood as follows: the 3× 3 matrix

P = 1
3(Y + 1) ∈ Mat(3,C) (4)

satisfies

P2 = P, Tr(P) = 1 (5)

as a consequence of(3), henceP ∈ Mat(3,C) is a projector of rank 1 and can be written as

P = |zi〉〈zi| = (zi)†(zi),

where (zi) = (z1, z2, z3) ∈ C
3 is normalized as〈zi|zi〉 = 1. Such projectors are equivalent

to rays inC
3, which give the second description ofCP2 asS5/U(1). The adjoint action on

Ycorresponds to the fundamental representation onC
3.

Similarly, to obtainCPn ∼= SU(n+ 1)/(SU(n)× U(1)), we need a matrixt ∈ su(n+
1) with two distinct eigenvalues and multiplicities (n,1), hence a natural choice ist =
diag(−1,−1, . . . ,−1, n) up to normalization. It satisfies the characteristic equation

χ(Y ) = (Y + 1)(Y − n) = 0. (6)

Again, this can be understood by considering the (n+ 1)× (n+ 1) matrix

P = 1

n+ 1
(Y + 1) ∈ Mat(n+ 1,C), (7)

which is also a projector of rank 1. HenceP ∈ Mat(n+ 1,C) can be written as

P = |zi〉〈zi|,

where〈zi|zi〉 = 1. This is the relation to the second description ofCPn asS2n+1/U(1).

1 Notice that there is also the “conjugated” space witht ∼= diag(1,1,−2), which correspond to the charge
conjugation of theCP2 defined here.
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2.2. Global coordinates forCP2 andCPn

For later purpose, we introduce coordinates onCP2 andCPn. It is useful to choose an
overcomplete set of global coordinates, which is easily generalized to the fuzzy case. Let us
first considerCP2, described as above by the matrixY = g−1tg ∈ Mat(3,C). It is natural
to write the matrixY in terms of the Gell–Mann matricesλa of su(3) as

Y = yaλa. (8)

The Gell–Mann matrices satisfy

tr(λaλb) = 2δab, λaλb = 2
3δab + (ifabc + dabc)λc, (9)

wherefabc are the totally antisymmetric structure constants, anddabc the totally symmetric
invariant tensors ofsu(3). Theλa are related to the generatorsTa of the Lie algebra via

λa = 2πΛ(1)(Ta). (10)

HereπΛ(1) denotes the fundamental representation ofsu(3) with highest weightΛ(1). The
characteristic equation

Y2 = Y + 2 (11)

written in terms of the coordinatesya in Eq.(8) takes the form

gabyayb = 3, dabcyayb = yc. (12)

It is clear from the above construction that this set of relations indeed characterizes the
appropriate adjoint orbit insu(3).

For CPn, we consider the generalized Gell–Mann matrices ofsu(n+ 1) which are de-
fined by

λa = 2πΛ(1)(Ta), (13)

whereTa are the generators ofsu(n+ 1). They satisfy

λaλb = 2

n+ 1
δab + (ifabc + dabc)λc. (14)

Then the characteristic equation

Y2 = (n− 1)Y + n (15)

using the expansionY = yaλa = g−1tg takes the form

gabyayb = n(n+ 1)

2
, dabcyayb = (n− 1)yc. (16)

2.2.1. Some geometry
Notice that the symmetry groupSU(3) contains both “rotations” as well as “translations”.

The generatorsJa act on a pointY = yaλa ∈ CP2 as

JaY = 1
2[λa, Y ] = 1

2yb[λa, λb] = ifabcybλc. (17)
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In terms of the coordinate functions on the embedding spaceR
8, this can be realized as

differential operator

Ja = i

2
fabc(yb∂c − yc∂b). (18)

Now we can identify the rotations inSU(3): Consider the “south pole” onCP2, for Y =
diag(−1,−1,2)= −rλ8 for the radiusr = √3, henceya = −rδa,8. The rotation subgroup
is generated by its stabilizer algebrasu(2)× u(1), which is generated by the elements

{λ1, λ2, λ3, λ8} (19)

of su(3) (using the standard conventions). It is a subgroup of the Euclidean rotation group
SO(4)= SU(2)L × SU(2)R. The remaining generators

{λ4, λ5, λ6, λ7} (20)

change the position ofY = −rλ8 ∈ CP2, hence they correspond to “translations”. All this
generalizes toCPn in an obvious way.

There is another interesting subspace ofCP2: the “north sphere”. This is a nontrivial
cycle ofCP2 which will be useful later. Consider again the parameterization ofCP2 in terms
of 3× 3 matricesY = U−1diag(−1,−1,2)U introduced inSection 2.1. Using a suitable
U ∈ SU(3), we can put it into the form

Y =
(

1
2 + yiσ

i 0

0 −1

)
. (21)

This is the subspace ofCP2 with maximal value ofy8 = 1
2r, wherey4,5,6,7 = 0 and 2r2 =

Tr Y2 = 2
∑

a=1,2,3,8 y
2
a. It follows thaty2

1 + y2
2 + y2

3 = 3
4r

2, which is a sphere of radius√
3

2 r.
A similar sphere can be found for allCPn: consider again matrices of the form(21)

with n− 1 entries−1 in the lower right block. Then the upper left block has the form
n−1

2 + yiσ
i, which has eigenvalues (−1, n) providedy2

1 + y2
2 + y2

3 = n+1
2n r2, hence it is a

sphere of radius
√

n+1
2n r. Herer is the radius ofCPn. One can now choose a Gell–Mann

basis ofsu(n+ 1) which contain the aboveσi, so that all other dya for a �= 1,2,3 vanish
on this sphere. This implies that these are non-trivial cycles, seeSection 5.3.

2.3. Harmonic analysis

FuzzyCPn is defined as a particular (finite) noncommutative algebra which is covariant
underSU(3), and is interpreted as quantization of the algebra of functions ofCPn. To
justify the construction, we first have to understand the space of harmonics onCPn, and
then compare it with the noncommutative case. This can be done using the Hopf fibration
U(1)→ S2n+1 → CPn.

First, consider the space of equivariant functions overS2n+1. Define theU(1) action on
C
n+1 as

ω ◦ (zi, z̄i) = (ziω, z̄iω̄), (22)
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whereω ∈ U(1). With thisU(1) action, we define the equivariant functionsC(κ,Cn+1) of
zi, z̄j by2

C(κ,Cn+1) = {f ∈ Pol(zi, z̄j), i, j = 1, . . . , n+ 1 andω ◦ f = fωκ, }
= ⊕

p
{Polp,q(z, z̄), p− q = κ}, (23)

where Polp,q(z, z̄) denotes the polynomial functions of degree (p, q) in the coordinateszi

resp.z̄j onC
n+1. As a representation ofsu(n+ 1), it has the structure

Polp,q(z, z̄) ∼= V(p,0,...,0)⊗ V(0,...,0,q),

whereV(d1,...,dn) denotes the highest weight irrep (=irreducible representation) with Dynkin
indices (d1, . . . , dn).

In order to identify these with the functions onS2n+1, we impose the condition
r2 =∑i z

iz̄i, which defines the equivariant functionsC(κ, S2n+1). By construction, it is
clear thatC(0, S2n+1) is isomorphic to the space of functionsC(CPn) on CPn. Since
V(p,0,...,0)⊗ V(0,...,0,p) = ⊕p

n=0V(n,0,...,0,n) and taking the radiusr into account, it follows
thatC(0, S2n+1) decomposes undersu(n+ 1) as

C(CPn) ∼= C(0, S2n+1) = ∞⊕
p=0

V(p,0,...,0,p). (24)

Similarly, C(κ, S2n+1) can be identified with the space of sectionsΓκ(CPn) of the line
bundle onCPn with monopole numberκ. Moreover, there is a natural multiplication of two
equivariant polynomialsC(κ, S2n+1) andC(κ′, S2n+1) such that

C(κ, S2n+1)× C(κ′, S2n+1) −→ C(κ + κ′, S2n+1). (25)

ThereforeΓκ(CPn) ∼= C(κ, S2n+1) is a module overC(CPn). The decomposition under
su(n+ 1) is similar to(24):

Γκ(CP
n) ∼= C(κ, S2n+1) = ∞⊕

n=0
V(n,0,...,0,n+κ), (26)

see also[4]. We will recover this structure of harmonics in the fuzzy case, up to some cutoff.

3. Fuzzy complex projective spacesC Pn
N

In general, (co)adjoint orbits(1)onGcan be quantized in terms of a simple matrix algebra
EndC(VN ), whereVN are suitable representations ofG. The appropriate representationsVN
can be identified by matching the spaces of harmonics (i.e. using harmonic analysis), see
[8] for the general case. FuzzyCP2 has been introduced in[4,22], and fuzzyCPn in [23].

2 If we follow strictly the Hopf fibration, we should first impose theSU(n+ 1) invariant condition
∑

ziz̄i = 1
and consider functions overS2n+1. However we impose this constraint later, which is more appropriate in the
fuzzy case.
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3.1. C P2
N

Again we first considerCP2. To identify the correct representationsVN of su(3), we
must match the space of harmonics(24) with the decomposition ofEndC(VN ) under the
adjoint, which is

End(VN ) = VN ⊗ V ∗N = ⊕
λ
nλVλ (27)

for certain multiplicitiesnλ. Hereλ denotes the highest weight. It is easy to see that for
bothVN = V(N,0) andV ′N = V(0,N) = V ∗N , we have

VN ⊗ V ∗N = V(N,0)⊗ V(0,N) ∼=
N⊕

p=0
V(p,p), (28)

which matches(24)up to a cutoff. Therefore we define fuzzyCP2 as

CP2
N := EndC(VN ) = Mat(DN,C) (29)

for VN = V(N,0),3 where

DN = dim(VN ) = (N + 1)(N + 2)

2
. (30)

Under the (adjoint) action ofsu(3), it decomposes into the harmonics(28)⊕N
p=0V(p,p),

cp. [4]. Comparing with(24), these harmonics are in one to one correspondence with the
harmonics on classicalCP2 up to the cutoff atp = N. The remarkable point is that this finite
space of harmonics closes under the matrix multiplication inCP2

N . Hence by construction,
fields onCP2 can be approximated byCP2

N = Mat(DN,C), therefore field theory on fuzzy
CP2

N should be a good regularization for field theory onCP2.
To make the correspondence with classicalCP2 more explicit, we consider the 3DN ×

3DN matrix

X =
∑
a

ξaλa, (31)

whereλa are the Gell–Mann matrices as before, and

ξa = πVN (Ta) ∈ CP2
N (32)

denotes the representation ofTa ∈ su(3) onVN . The coordinate functionsxa = (x1, . . . , x8)
on fuzzyCP2 are defined by

xa = ΛNξa ∈ CP2
N. (33)

They are operators acting onVN . HereΛN is a scaling parameter which will be fixed below.
By construction, thexa transform in the adjoint undersu(3), just like the classical coordinate
functionsya introduced inSection 2.2.

3 Alternatively,CP2∗
N for V ′N = V(0,N), which is equivalent as algebra.
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To find the relations among these generatorsxa, we can use the characteristic equation
(A.7) of X given inAppendix A:

X2 = ξaξb

(
2

3
δab + (ifabc + dabc)λc

)
= 2

3

(
1

3
N2+N

)
+
(
N

3
− 1

)
X. (34)

Usingfabcfdbc = 3δad , we obtain

ifabcξaξb = −3
2ξc, [ξa, ξb] = ifabcξc, (35)

gabξaξb = ( 1
3N

2+N), (36)

dabcξaξb =
(
N

3
+ 1

2

)
ξc. (37)

Hence taking the scale parameterΛN to be

ΛN = 1√
1
3N

2+N

, (38)

we find the defining relation of the algebraCP2
N :

[xa, xb] = i√
1
3N

2+N

fabcxc, (39)

gabxaxb = 1, (40)

dabcxaxb =
N
3 + 1

2√
1
3N

2+N

xc (41)

in agreement with Balachandran et al.[22].
Let us verify thatCP2

N admits an approximate “south pole” atx8 ≈ −1. It corresponds to
the lowest weight state ofV(N,0) which has eigenvalueξ8 = − 2N√

3
, hencex8 = − N√

N2+3N
≈

−1. ForCP2∗
N , one would obtain an approximate north pole, but no south pole.

The “angular momentum” operators (generators ofSU(3)) now become inner derivations:

Jaf (x) = [ξa, f ] (42)

andJaxb = [ξa, xb] = ifabcxc, as classically. Recall that the symmetry groupSU(3) con-
tains both “rotations” as well as “translations”.

The integral onCP2
N is given by the suitably normalized trace:∫

f (x) = 1

DN

Tr(f ) = 2

(N + 1)(N + 2)
Tr(f ), (43)

which is clearly invariant underSU(3).
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3.2. C Pn
N

The construction for fuzzyCPn is entirely analogous to fuzzyCP2. To identify the
correct representationsVN of su(n+ 1), we must match the space of harmonics(24)with the
decomposition ofEnd(VN ) = VN ⊗ V ∗N = ⊕λ nλVλ for certain multiplicitiesnλ. Similar
to the case ofsu(3), it is easy to show that

VN ⊗ V ∗N ∼=
N⊕

p=0
V(p,0,...,0,p), (44)

where

VN := V(N,0,...,0).

The representations appearing in the r.h.s. of Eq.(44) match(24) up to the cutoffN. We
therefore define the algebra of the fuzzy projective space by

CPn
N := EndC(VN ) = Mat(DN,C), (45)

where

DN = dim(VN ) = (N + n)!

n!N!
(46)

from Weyl’s dimension formula. The fuzzy coordinates and their commutation relations are
obtained again by considering the (n+ 1)DN × (n+ 1)DN matrix

X =
∑
a

ξaλa, (47)

whereλa are the Gell–Mann matrices ofsu(n+ 1) and

ξa = πVN (Ta) ∈ CPn
N. (48)

The coordinate functionsxa for a = 1, . . . , n2+ 2n on fuzzyCPn are defined by

xa = ΛNξa ∈ CPn
N. (49)

ΛN is a scaling parameter which will be fixed below. By construction, thexa transform
in the adjoint undersu(n+ 1), just like the classical coordinate functionsya introduced in
Section 2.2. Using the characteristic Eq.(A.11) of X:(

X− nN

n+ 1

)(
X+ N

n+ 1
+ 1

)
= 0, (50)

we have

X2 = ξaξb

(
2

n+ 1
δab + (ifabc + dabc) λc

)

= n

n+ 1

(
1

n+ 1
N2+N

)
+
(
N(n− 1)

n+ 1
− 1

)
X. (51)
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Usingfabcfdbc = (n+ 1)δad , we obtain

ifabcξaξb = −n+ 1

2
ξc, [ξa, ξb] = ifabcξc, (52)

gabξaξb = n

2

(
1

n+ 1
N2+N

)
, (53)

dabcξaξb = (n− 1)

(
N

n+ 1
+ 1

2

)
ξc. (54)

Hence for

ΛN = 1√
n

2(n+1)N
2+ n

2N
, (55)

we find

[xa, xb] = iΛNfabcxc, (56)

gabxaxb = 1, (57)

dabcxaxb = (n− 1)

(
N

n+ 1
+ 1

2

)
ΛNxc. (58)

For largeN, this reduces to(16). Again,CPn
N admits an approximate “south pole” which

corresponds to the lowest weight state ofVN . The symmetry groupSU(n+ 1) acts by inner
derivation as forCP2, and the integral is given by the suitably normalized trace overVN .

3.3. Representation on a Fock space

In order to introduce nontrivial line bundles, it is useful to quantize directly the fibra-
tionU(1)→ S2n+1 → CPn. In this section we will first introduce noncommutativeC

n+1,
in terms of operatorsai, a+i (i = 1, . . . , n+ 1) which are quantizations of the coordinate
functionszi, z̄i of C

n+1 ⊃ S2n+1. Then fuzzyCPn will be obtained as a subalgebra of this
noncommutativeCn+1. This has been used first in[22]. The equivalence to the definition
given previously will be manifest.

The generatorsa+i , a
i of noncommutativeCn+1 are creation- resp. annihilation oper-

ators which transform asV(1,0,...,0) resp.V ∗(1,0,...,0) = V(0,...,0,1), and satisfy the canonical
commutation relations

[ai, aj] = [a+i , a
+
j ] = 0, [ai, a+j ] = δij. (59)

The resulting algebra will be denoted asC
n+1
θ .

As in the previous section, we consider theU(1) defined by

ω ◦ (ai, a†i ) = (aiω, a+i ω̄), (60)

whereω ∈ C and|ω| = 1. With thisU(1) action, the equivariant operatorsC(κ,Cn+1
θ ) are

defined by

C(κ,Cn+1
θ ) = {f |f ∈ Pol(ai, a+i ), i = 1, . . . , n+ 1 and ω ◦ f = fωκ}. (61)
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This means thatκ counts the difference of the number of creation and annihilation operators,
and thus an elementf ∈ C(κ,Cn+1

θ ) satisfies

[N, f ] = κf, (62)

whereN is the number operator:N =∑n+1
i=1 a+i a

i.
As in the commutative case, there is a natural multiplication of the equivariant operators

C(κ,Cn+1
θ ) andC(κ′,Cn+1

θ ) such that

C(κ,Cn+1
θ )× C(κ′,Cn+1

θ ) −→ C(κ + κ′,Cn+1
θ ). (63)

Hence the equivariant operatorsC(κ,Cn+1
θ ) can be interpreted asC(0,Cn+1

θ )-module.
Consider the following generators ofC(0,Cn+1

θ ):

ξ̃a = a+i (Ta)
i
ja

j, Ta = 1
2λa. (64)

By construction, they transform in the adjoint ofsu(n+ 1), and satisfy the relations

[ξ̃a, ξ̃b] = ifabcξ̃c (65)

and ∑
a=1,...,n2+2n

ξ̃aξ̃a = n

2(n+ 1)
N(N+ n+ 1). (66)

To obtain fuzzyCPn
N , we must “fix the radius” inCn+1

θ , i.e. choose a Fock space repre-
sentation with fixed particle numberN. As usual, the Fock space is defined by acting with
the creation operatorsa+i on the vacuum state|0〉, which satisfiesai|0〉 = 0. TheN-particle
subspaceFN is obtained by acting withN creation operators on the vacuum, with basis

| �m〉 =
√
m1!m2! · · ·mn+1!

N!
(a+1 )m1(a+2 )m2 · · · (a+n+1)mn+1|0〉, (67)

where the label�m is a set of positive integersmi, �m = (m1, . . . , mn+1) satisfying
∑

i mi =
N.

Hence if acting on theN-particle subspaceFN , we recover precisely the relations(52)
and(53). Next, we verify that the operatorsξ̃a also satisfy(54) if acting onFN . In order to
see this, we prove the characteristic equation(50) as follows: using the Fierz identity for
the generatorsT a and the definition of the generatorsξ̃, we obtain

a+j a
i = 2

∑
T ai

jξ̃
a + 1

n+ 1
δijN = aia+j − δij. (68)

On the other hand, it is straightforward to confirm that the operatorP:

Pi
j =

1

N+ 1
aia+j (69)

is a projection operator, i.e.P2 = P . Defining the matrixX̃i
j = 2

∑
T
aij ξ̃a and using(68),

the operatorP can be written as

P = X̃+ 1+ N
n+1

N+ 1
. (70)
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In terms ofX̃, the relationP2 = P gives

0= P(P − 1)= 1

(N+ 1)2

(
X̃+ 1+ N

n+ 1

)(
X̃− N+ N

n+ 1

)
. (71)

This is exactly the characteristic equation(50) for X, if the number operatorN is replaced
by the numberN. Hence the relations(52)–(54) of fuzzy CPn hold on the Fock space
representationFN of C(0,Cn+1

θ ).
Therefore anyf ∈ C(0,Cn+1

θ ) defines a map

f : FN −→ FN. (72)

Now observe that the Fock spaceFN is precisely the irreducible representationVN =
V(N,0,...,0) of su(n+ 1). Since the generators̃ξa act onFN and generate thesu(n+ 1)
algebra, they generateEndC(FN ), and the equivalence of this definition ofCPn

N with the
one given in the previous section in terms ofMat(DN,C) (or more preciselyEndC(VN ))
is manifest4.

4. Projective modules

From the noncommutative geometry point of view, the algebraic object corresponding
to a vector bundle is the projective module of finite type. This equivalence of vector bundles
and projective modules is based on the Serre-Swan Theorem, and thus in the following
discussion, the projective modules are the relevant objects to deal with.

A projectiveA-module can be constructed from the free moduleAp together with a
projection operatorP, which is an element ofMat(p,A), the space ofp× p matrices with
elements in the base algebraA.

We will consider the noncommutative analogue of the monopole bundles, i.e. theU(1)
bundles over the fuzzyCPn. For this purpose, we construct a rank 1 projection operator
which determines the module associated with the complex rank 1 vector bundle. The ad-
vantage of this formulation compared to[4] is that it also provides a canonical connection,
which can be used e.g. to calculate Chern numbers.

We follow the approach taken in[26] here. In general, a rank 1 projection operator
P ∈ End (Ap) in the space ofp× p matrices can be constructed by using anp-component
vector defined as follows:

v = (vµ), µ = 1, . . . , p, (73)

wherevµ is an element of a left-B-right-A bimoduleM. HereB is also an algebra, but not
necessarily equivalent toA. The only condition needed is the normalization condition

v†v =
∑
µ

v†µvµ = 1B, (74)

4 The conjugated versionCP2∗ would be obtained using the conjugatedλa matrices̃λa, andb+i, bj transforming
in the dual representations.
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where1B denotes the identity of the algebraB. Using this vectorv, we define the projection
operator as

P = vv†. (75)

It is apparent that

PP = v(v†v)v† = v1Bv† = P (76)

by the normalization condition.
Note that in order to define the projective module, the matrix elements of the projection

operatorP must be elements of the algebraA. However, this does not mean that each
element of the vectorv is also an element ofA. Recall that a similar situation occurs in
the construction of the so-called localized instanton inR

4
θ using the ADHM construction

[28,29,1].
When we construct the vectorv below, we take the elements to be inC(κ,Cn+1

θ ). Then
the matrix elements of the projection operatorPκ defined as in(75)are indeed elements of
C(0,Cn+1

θ ), which if acting onFN is justCPn
N , as it should.

To define the vectorv, we should distinguish two cases depending on the sign of the
integerκ:

1. For 0< κ:

v(�j) = (a1)j1(a2)j2 · · · (an+1)jn+1c+(�j), (77)

where the dimension of the vectorv is Dκ = (n+κ)!
n!κ! , �j = (j1, . . . , jn) whereji ≥ 0 are

integers with
∑

ji = κ. The normalization factor is

(c+(�j))2 = κ!

j1!j2! · · · jn+1!N(N− 1) · · · (N− κ + 1)
. (78)

2. For−N < κ < 0:

vµ = (a+1 )j1(a+2 )j2 · · · (a+n+1)jn+1c−(�j), (79)

where the dimension isDκ = (n+|κ|)!
n!|κ|! , and the normalization is

(c−(�j))2 = |κ|!
j1!j2! · · · jn+1!(N+ n+ 1)(N+ n+ 2) · · · (N+ n+ |κ|) . (80)

It is easy to verify in both cases thatv†v = 1B.
One might worry that the denominator of the normalization factorc+(�j) can become 0 for

largeκ > 0. However, when constructing the projection operatorPκ = vv† and specifying
the representation space to beFN , the number operatorN in c+ is replaced by the value
N + κ. Therefore forκ > 0 all expressions are well-defined.

On the other hand, forκ < 0, there is a limit for the admissible values ofκ. The reason
is thatv† contains|κ| annihilation operators, hence

Pκ = vv†
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acting onFN is ill-defined if |κ| > N. Therefore we must impose the boundκ +N ≥ 0 in
the caseκ < 0.

4.1. Scalar fields, or sections in line bundles

Now we can consider the projective moduleΓκ(CPn
N ) = Pκ(CPn

N )D|κ| . An elementξ
of the moduleΓκ(CPn

N ) is thus aD|κ|-dimensional vectorξ = {ξµ}, the components of
which areξµ ∈ CPn

N . This is a section of the line bundle, corresponding to a complex scalar
field in U(1) gauge theory. However, the complex scalar field inU(1) gauge theory has a
single component in the conventional field theory formulation. The relation between these
formulations will be explained next.

Assume thatκ +N ≥ 0. The single-component scalar field, i.e. section of the monopole
bundle, is given by

ξ̂ = v†ξ =
∑
µ

v†µξµ. (81)

On the other hand, we can act withξ̂ on an elementψ =∑m fm|m〉 ∈ FN , with the result

ξ̂ψ =
(∑

µ

v†µξµ

)(∑
m

fm|m〉
)

=
∑

pi∈Z+,

p1+···+pn+1=N+κ

f ′p1···pn+1
(a+1 )p1 · · · (a+n+1)pn+1|0〉, (82)

i.e.

ξ̂ψ ∈ FN+κ. (83)

Thus we can identify an elementξ̂ ∈ C(κ,CPn
N ) with a map

ξ̂ ∈ HomC(FN,FN+κ) : FN −→ FN+κ (84)

in agreement with[4]. In other words, we can identify the scalar fieldξ̂ on CPn
N with

monopole chargeκ with aDN ×D(N+κ) rectangular matrix. Equivalently, we can identify
the section of the line bundle overCPn

N given by ξ̂ ∈ C(κ,Cn+1
θ )N as CPn

N+κ–CPn
N

bimodule.
Note that from this construction, it is apparent that we must impose the boundκ +N ≥ 0.
From the above construction, we see that there are two pictures of the monopole bundle

CPn
N+κ–CPn

N bimodule. Namely, the same bimodule can be obtained from fuzzyCPn
N+κ

with monopole charge−κ (assumingN + κ > 0). Since in noncommutative algebras we
have to make a choice of left and right multiplication on the module, we can find two
equivalent bimodules as

1. Monopole with charge|κ| onCPn
N .

2. Monopole with charge−|κ| onCPn
N+|κ|.
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Hence there is a duality betweenCPn
N with monopole chargeκ andCPn

N+κ with monopole
charge−κ. We see thatCPn

N andCPn
N+|κ| are Morita equivalent, and the scalar field is

the equivalence bimodule (the inverse ofξ̂ is given by its conjugate). This is an example
showing the relation of Morita equivalence and duality of the noncommutative space.

5. Differential calculus, connection and field strength

5.1. Differential forms

We introduce a basis of one-formsθa, a = 1,2, . . . , n2+ 2n à la Madore[2], which
transform in the adjoint ofsu(n+ 1) and commute with the algebra of functions:

[θa, f ] = 0, θaθb = −θbθa. (85)

This defines a space of exterior forms on fuzzyCPn
N , which we denote byΩ∗N := Ω∗(CPn

N ).
The gradation given by the number of anticommuting generatorsθa. The highest non-
vanishing form is the (n2+ 2n)-form corresponding to the volume form ofsu(n+ 1).

One can also define an exterior derivatived : Ωk
N → Ωk+1

N such thatd2 = 0 and im-
posing the graded Leibniz rule. Its action on the algebra elementsf ∈ Ω0

N is given by the
commutator with a special one-form: Consider the invariant one-form

Θ = ξaθa. (86)

Then the exterior derivative of a functionf ∈ CPn
N is given by

df := [Θ, f ] = [ξa, f ]θa. (87)

In particular, we have

dξb = [ξa, ξb]θa = ifabcθaξc. (88)

The definition ofd on higher forms is straightforward, once we findd : Ω1
N → Ω2

N such
thatd2(f ) = 0. To find it, we follow the approach of[30] for theq-fuzzy sphere. Notice
first that there is a natural bimodule-map from one-forms to 2-forms, given by

?1(θa) := i

2
fabcθbθc. (89)

Then we define

d : Ω1
N → Ω2

N, α �→ dα = [Θ,α]+ − ?1(α), (90)

whereα ∈ Ω1
N . One can verifyd2 = 0 in general. To see this, note that

df = [Θ,df ]+ − ?1(df ) = 0

using the following relation:

?1(Θ) = Θ2. (91)
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This follows from

Θ2 = ΘΘ = 1

2
θaθb[ξa, ξb] = i

1

2
fabcθaθbξc =:

i

ΛN

η, (92)

whereη = 1
2θaθbfabcxc is the symplectic form. One can also show that

dΘ = Θ2, (93)

which implies

dη = 0. (94)

Furthermore, using group-theoretic arguments5 it is easy to see that

η = C
1

2
fabc dxa dxbxc (95)

for some numerical constantC. This is more easily recognized as symplectic form.
In order to extend this calculus toCn+1

θ , we can express the generatorΘ in terms of the
generatorsaj, a+i as above, interpreted as quantizations of the coordinate functionszj, z̄i
onC

n+1:

Θ = a+i T
i
aja

jθa. (96)

Then the calculus onCPn
N naturally induces a calculus onCn+1

θ .

5.1.1. Relation to the classical case
For later use, we want to calculate the constantC in (95) in the classical limitN →∞.

ConsiderCP2 for simplicity. We introduce a normalization of the frame by

〈θa, θb〉 = cδab, (97)

where the constantc is determined such that the tangential one-forms are properly normal-
ized: using(88), we have

〈dya,dyb〉 = −frasfubvysyv〈θr, θu〉 = −cfarsfbrvysyv (98)

(recall thatya denotes the classical coordinate functions). It is sufficient to consider the
“south pole” ofCP2, whereya = −δa,8 as discussed inSection 2.2(settingr = 1). Then

〈dya,dyb〉 = −cfar8fbr8 != δ
(tang)
ab , (99)

which due to the explicit form offab8 is non-vanishing only for tangential dya, i.e.a, b ∈
{4,5,6,7} as in(20). This shows that the “non-tangential” one-forms onCP2 have zero
norm, and indeed the correct four-dimensional calculus onCP2 is recovered from our
construction. In the fuzzy case, the additional one-forms cannot be avoided, however.

5 Using (88) we can writefabc dxa dxbxc ∝
∑

xxxθθ, which must be a singlet. Nowxxx ∈ V(3,3) ⊕ V(2,2) ⊕
V(1,1), but onlyV(1,1) can be contracted withθθ to give a singlet.
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The constantc can now be calculated by summing over the tangentiala, b ∈ {4,5,6,7},
which gives

4= δ
(tang)
ab 〈dya,dyb〉 = δab〈dya,dyb〉 = −cfrasfravysyv = −3c. (100)

Here we used the result that〈dya,dyb〉 = 0 for non-tangential forms, and

frasfrav = 3δsv (101)

for su(3). Therefore

c = −4
3. (102)

We can now relateη = 1
2θaθbfabcyc to

η′ = 1
2fabcdyadybyc. (103)

Comparing〈η, η〉 with 〈η′, η′〉, we obtain

η′ = 1

2c
fabcθaθbyc = 1

c
η, (104)

therefore

η′ = −3
4η (105)

for CP2. ForCPn, the same calculation gives

η′ = −n+ 1

2n
η. (106)

5.2. Canonical connection and field strength

Once we have a differential calculus, we can define the canonical connection∇ over the
projective moduleΓκ(CPn

N ) defined by the projectionPκ by

Pκ dξ, (107)

where ξ ∈ Γκ(CPn
N ). The curvature 2-form of this canonical connection is given by

Pκ dPκ dPκ.
When the connection is represented by the covariant derivative on the scalar fieldξ̂, we

obtain

∇ ξ̂ ≡ v†(Pκ dξ) = (d+ v† dv)ξ̂. (108)

The gauge field and field strength of the above connection∇ is given by

A = v†dv = v†Θv−Θ, (109)

F = v†Pκ dPκ dPκv = v†Θvv†Θv− v†Θ2v. (110)

In order to evaluate this expression, we extend the differential calculus fromCPn
N toC

n+1
θ as

discussed above, postulating that theθa commute with allai, aj (this can also be interpreted
as a calculus on theU(1) principal bundle overCPn

N ).
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Assume firstκ > 0. Then using

ajN = (N+ 1)aj, Na+i = a+i (N+ 1), (111)

we have

v†Θv = v†a+i a
jv T i

ajθa = a+i v†(N+ 1)v(N+ 1)ajT i
ajθa

= N − κ

N
a+i a

jT i
ajθa =

N − κ

N
Θ (112)

since

v†(N+ 1)v(N+ 1)= N+ 1− κ

N+ 1
(113)

by construction.
Similarly:

v†Θ2v = v†(a+i T
i
aja

j θa)(a
+
l T

l
bk
akθb)v

= v†a+i T
i
ajT

j

b k
akvθaθb + v†a+i a

+
l a

jakvT i
ajT

l
bk
θaθb, (114)

which, using

TaTb = 1

2(n+ 1)
δab + 1

2
(ifabc + dabc)Tc (115)

is

v†Θ2v = v†a+I

(
1

2(n+ 1)
δabδ

i
k +

1

2
(ifabc + dabc)T

i
ck

)
akvθaθb

+ a+i a
+
l v†(N+ 2)v(N+ 2)ajakT i

ajT
l
bk
θaθb

= i

2
v†a+i fabcT

i
cka

k vθaθb + N − κ

N
a+i ([a+l , a

j] + aja+l )akT i
ajT

l
bk
θaθb

= i

2
a+i v†(N+ 1)v(N+ 1)fabcT

i
cka

kθaθb − N − κ

N
a+i a

kT i
ajT

j

b k
θaθb

+ N − κ

N
a+i T

i
aja

ja+l T
l
bk
akθaθb = N − κ

N
Θ2. (116)

Therefore

F =
((

N− κ

N

)2

−
(
N− κ

N

))
Θ2 = −κ(N− κ)

N2ΛN

iη = −κN
(N + κ)2ΛN

iη, (117)

where we have used that when the field strengthF is evaluated over the scalar fieldξ̂, the
number operator takes the valueN = N + κ. Similarly for κ < 0, we have

F = |κ|(N+ n+ |κ| + 1)

(N+ n+ 1)2ΛN

iη = |κ|(N + n+ 1)

(N − |κ| + n+ 1)2ΛN

iη. (118)
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Thus in the largeN limit, we obtain for allκ

F = −κ
√

n

2(n+ 1)
iη = κ

√
2

(
n

n+ 1

)3/2

iη′ (119)

using(106), up to+o(1/N) corrections. Hence the field strength is indeed quantized, and it
is a multiple of the symplectic form in the largeN limit. In the next section, we verify that
the first Chern numberc1 is given by−κ in the classical limit.

5.3. Calculation of the first Chern number forN →∞

In the classical case, we can integrate the symplectic formη′ over the cycley2
1 + y2

2 +
y2

3 = n+1
2n in CPn found inSection 2.2. Usingfabc = εabc for a, b, c ∈ {1,2,3}, we have∫
S2
R

η′ =
∫
S2
R

1

2
εabcya dyb dyc = 4πR3, (120)

where the sphere has radiusR2 = n+1
2n . This shows in particular that these spheres are indeed

non-trivial. Therefore using(119), the first Chern number is

c1 = i

2π

∫
S2
R

F = −κ (121)

in the commutative limitN →∞. This shows that the bundles constructed above should
be interpreted as noncommutative versions of the classical monopole bundles with Chern
numberc1 = −κ.

5.4. Discussion on Chern numbers for finite N

In the fuzzy case (i.e. for finiteN), it is very difficult to give a satisfactory definition of
Chern numbers. One reason for this is the lack of a differential calculus with the appropriate
dimensions for finiteN. However, it is known e.g. from recent investigations of fuzzy spheres
[14] that it is still possible to write down suitable integrals in the fuzzy case, which in the large
N (i.e. the commutative) limit reproduce the usual Chern numbers, but which are neither
topological nor integer for finiteN. We will refer to such prescriptions as “asymptotic”
Chern numbers. They are still useful since they produce numbers in the fuzzy case which
reduce to the usual (integer) Chern numbers in the classical limit. We illustrate this for
fuzzy CPn

N by giving a prescription to calculate such an “asymptotic” Chern numberc1,
integrating i

2πF over a suitable “fuzzy sub-sphere”.

5.4.1. Fuzzy sub-spheres
In the classical case,c1 can be obtained by integratingi2πF over any 2-sphere inCPn.

SinceCPn
N is defined in terms of a simple matrix algebra, it does not admit any non-trivial

subspacesCPn
N/I defined by some two-sided idealI. Therefore in order to compute the

first “asymptotic” Chern number, we have to relax the concept of a subspace in the fuzzy
case. A natural way to do this in our context is the following.
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Note that for any given rootα of su(n+ 1),VN ∼= FN decomposes into a direct sum of
irreps ofsu(2)α ⊂ su(n+ 1). Now fix a rootα. Then there is precisely one such irrep denoted
byHα,N which has maximal dimensionN + 1 (note that the weights ofVN form a simplex
in weight lattice of sizeN + 1). The other irreps have smaller dimensionM + 1≤ N + 1,
denoted byHα,M (we omit additional labels for simplicity). LetPα,M : VN → Hα,M be
the projector onHα,M . Now we can define maps

CPn
N
∼= End(VN ) → End(Hα,M)), f �→ f̂ := Pα,MfPα,M. (122)

In principle, each

S2
α,M := End(Hα,M) (123)

could be considered as a fuzzy sphere, but not necessarily as sub-spheres ofCPn
N . However,

we shall explain below that the maximalS2
α,N can be considered as an “asymptotic sub-

sphere” ofCPn
N , in the sense that it becomes the algebra of functions on a sub-sphere ofCPn

in the largeN limit. This sub-sphere in fact coincides with the non-trivial 2-cycles found
in Section 2.2for suitable choice of the rootα. To see this, consider the corresponding
projected coordinate generators

x̂a = Pα,MxaP
α,M (124)

obtained from the fuzzy coordinate functions ofCPn
N . If S2

α,M is to be interpreted as sub-
sphere ofCPn

N , thenx̂a should be interpreted as restriction (or pull-back) of the coordinate
functionxa of CPn

N to S2
α,M . However, it is easy to see that6

gabx̂ax̂b < 1 (125)

for finiteN, which is in contrast to the constraintgabxaxb = 1 (57) of CPn
N . The reason is

that the (rescaled) quadratic Casimir ofsu(n+ 1), which can be written as

gabxaxb =
∑
β

(
1

2
x+β x

−
β +

1

2
x−β x

+
β

)
+
∑
i

H2
i = 1, (126)

where
∑

β goes over all positive roots ofsu(n+ 1), andHi are the (suitably rescaled) Cartan
generators. Now the restricted generators are related to the unrestricted ones as follows:

x̂±α = x±α , Ĥi = Hi, x̂±β = 0 forβ �= α, (127)

becausex±β does not preserve anyHα,M for β �= α. This implies(125), since (12x
+
β x
−
β +

1
2x
−
β x
+
β ) is positive definite. This reflects the fact thatCPn

N does not admit any (strict)
sub-spaces. However, we can consider “asymptotic sub-spaces” by relaxing the constraint
gabxaxb = 1 and allow for “quantum corrections” of order 1/N, requiring only

gabx̂ax̂b = 1−O
1

N
. (128)

This holds indeed forHα,N , but in general not forHα,M with M < N. To see this, recall
that the rising- and lowering operators act asξ+β vk =

√
(M − k)kvk+1 where{vk} is the

6 This inequality is to be understood in the operator-norm.
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normalized weight basis of thesu(2)β irrepHβ,M , and similar forξ−β . Including the scale
factor ŁN = O(1/N), this implies

x±β = O
1√
N
, (129)

if acting onHα,N (recall that the weights ofVN form a simplex in weight lattice of size
N, andHα,N forms an edge of this simplex), while it is not true in the bulk ofVN i.e. on
generalHα,M . Therefore we can considerS2

α,N as “asymptotic subspace” ofCPn
N , which

in fact reduces forN →∞ to the non-trivial 2-cycles found inSection 2.2. This will be
used in the calculation of asymptotic first Chern numbers below.

5.4.2. Asymptotic first Chern number
To compute the Chern numberc1, we have to integratei2πF over a 2-cycle inCPn

N .
According to the above discussion, we give a definition in terms of an integral over a
specific fuzzyS2

α,N
∼= CP1

N which is an asymptotic subspace ofCPn
N in the above sense,

and then perform the integration.
In order to specify theS2

α,N , we first choose a Hilbert spaceHα,N with maximal dimen-
sion, denoted byFS . It can be defined as

FS = {|ψ〉 ∈ FN ; ai|ψ〉 = 0 for i = 3, . . . , n+ 1 and N|ψ〉 = N|ψ〉}. (130)

The spaceFS has the same dimension as the Hilbert space of fuzzyCP1
N . The generators

associated with thesu(2) rotations of this fuzzyCP1 are

Tm = 1

2



σm · · · 0
...

...
...

0 · · · 0


 . (131)

The corresponding coordinates are linear combinations of coordinate operators ofCPn
N ,

and we denote them by ˆxm = ΛNa
+
i T

m
ij aj in agreement with the notation of the previous

section. The radius of fuzzyCP1 is defined by these coordinates ˆxm as

3∑
m=1

(x̂m)2 = 1

4
Λ2

NN(N + 2)= R2
N. (132)

Representing the algebra generated by ˆxm onFS , we obtain precisely the matrix algebra
of fuzzy CP1

N . Therefore we can use the standard results of the integration overCP1
N . We

introduce the volume element of this fuzzyCP1
N ,

ω = 1

2RN

εmnpx̂m dx̂n dx̂p ∈ Ω2,

which is an invariant 2-form and agrees with the volume element of the sphere with radius

R =
√

n+1
2n in the commutative limitN →∞. The integration

∫
: Ω2 → C over this fuzzy
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CP1
N is then defined by[14]

1

2

∫
CP1

N

fεmnpx̂m dx̂n dx̂p ≡ 4πR3
N TrFS {f }, (133)

where TrFS denotes the trace overFS normalized such that TrFS {1} = 1. Using the com-
mutation relations of ˆxm and the definition of the derivatives defined in the previous section,
we obtain

ω = RN

(
1

N(N+ 2)
− 1

2

)
εmnpx̂mθ̂nθ̂p, (134)

where thêθm, m= 1,2,3 is the one form overCP1
N .

The Chern characterc1 is defined by using the projection operatorsPκ. To evaluate it we
first take theCPn

N -valued trace Trκ{·} overEnd(Γκ(CPn
N )), and then integrate overCP1

N :

c1 = i

2π

∫
CP1

N

Trκ{Pκ dPκ dPκ} = i

2π

∫
CP1

N

∑
µ

vµFκv
†
µ, (135)

whereFκ is the field strengthF given either in Eq.(117) or (118), depending on the value
of κ.

Using the definition(77)and(79)of vµ we can perform the summation overµ and find
the following expression for the integrand:

Forκ > 0:∑
µ

vµFκv
†
µ =

(N+ n+ κ + 1) · · · (N+ n+ 2)

(N+ 1) · · · (N+ κ)

−iκN
2(N+ κ)2ΛN

fabcxaθbθc. (136)

Forκ < 0:∑
µ

vµFκv
†
µ =

−iκ(N− |κ|) · · · (N− 1)

(N+ n− |κ| + 1) · · · (N+ n)

(N+ n+ 1)

2(N− |κ| + n+ 1)2ΛN

fabcxaθbθc.

(137)

These are 2-forms overCPn
N . In order to integrate them over the fuzzy sub-spaceCP1

N , we
should also pull-back these 2-forms toCP1

N . To do this we split the coordinates into the two
orthogonal sets, (xm, xm⊥ ), wherexm corresponds to theSU(2)α. Correspondingly, we split
the one-forms into (θm, θm⊥ ). This means thatθm is the dual of∂m = 1

ΛN
adxm , analogously

to the commutative case. Now we define the pull-back by projecting outθm⊥ and identify
θ̂m with θm.

SinceCP1
N corresponds to asu(2) subalgebra ofsu(n+ 1), this implies that the pull-back

of fabcxaθbθc is εmnpx̂mθ̂nθ̂p. This can now be integrated over fuzzyCP1
N with radiusRN

according to(133), and we get from(135)for κ > 0

c1 = i

2π

(N + n+ κ + 1) · · · (N + n+ 2)

(N + 1) · · · (N + κ)

−iκN

2(N + κ)2ΛN

∫
CP1

N

εmnp(x̂mθ̂nθ̂p)

= −κ (N + n+ κ + 1) · · · (N + n+ 2)

(N + 1) · · · (N + κ)

N

(N + κ)2

√
N(N + 2)(

1− 2
N(N+2)

) . (138)
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For largeN this yields

c1 = −κ + 1

N
(κ(n− 1)+ 1)+ · · · . (139)

In the same way we get forκ < 0:

c1 = −κ (N − |κ|) · · · (N − 1)

(N + n− |κ| + 1) · · · (N + n)

(N + n+ 1)

(N − |κ| + n+ 1)2

√
N(N + 2)(

1− 2
N(N+2)

) . (140)

The expansion with respect to1
N

is

c1 = −κ
(

1+ 1

N
(−κ(n− 1)− n)+ · · ·

)
. (141)

6. Conclusion

In this paper, we investigated the definition of fuzzy complex projective spaceCPn
N from

two different points of view, and constructed the nontrivialU(1) bundles over those spaces.
The corresponding Chern classes are calculated.

The first approach is to considerCPn as (co)adjoint orbit, given by (n+ 1)× (n+ 1)
matricesYwhich satisfy a certain characteristic equation. The quantization of the function
algebra is given by a simple matrix algebraMat(DN,C), more preciselyEndC(VN ) for
certain irreducible representationsVN of su(n+ 1). The appropriate representationsVN are
determined using harmonic analysis. This leads to an algebra-valued (n+ 1)× (n+ 1)
matrix X, whose characteristic equation gives the explicit relations satisfied by the fuzzy
coordinate functions.

The second approach uses the generalized Hopf fibrationU(1)→ S2n+1 → CPn. Again
a characteristic equation is derived for a certain operator-valued matrix, which coincides
with the first approach when we specify the Fock space representationFN ∼= VN . The
second construction is very useful to define the projective modules.

We then construct the projective modules by giving the projection operator in terms
of a normalized vector, following the approach for monopoles onS2. We find nontrivial
projective modules ofCPn

N labeled by an integerκ, which are interpreted as fuzzy version
of the monopole bundles onCPn with monopole numberκ. Using a suitable differential
calculus, we then calculate the field strength over the monopole bundle, or equivalently the
first Chern class. We verify explicitly that the usual Chern numberc1 is recovered in the
commutative limit.

Finally let us recall that fuzzy spaces arise naturally in string theory, for example as
D-branes on group manifolds or as solutions of the IKKT matrix model. In both cases one
expects that the low-energy effective action should be given by an induced gauge theory.
These gauge theories typically have degrees of freedom which are not tangential as in
conventional field theories. As we have seen, such degrees of freedom do arise naturally in
the differential calculus on fuzzy spaces.

There are several open questions which deserve further investigations. There exists a
somewhat different (but related) formulation of monopoles as solutions of a matrix model
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on the fuzzy sphere[15]; the extension of this construction to fuzzyCP2 will be presented
elsewhere[31]. Furthermore, fermions have been discussed extensively on the fuzzy sphere,
but for CPn no fully satisfactory formulation is available. Of course, a generalization to
instantons would also be desirable.
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Appendix A. Characteristic equation

A.1. su(3)

Consider the representation

V := VNΛ1 ⊗ VΛ1 = V(N+1)Λ1 ⊕ V(N+1)Λ1−α1 (A.1)

of su(3). The operatorX =∑a ξaλa is an intertwiner onV, whereλa = 2πΛ(1)(Ta) and
ξa = πNΛ(1)(Ta) andTa are the generators ofsu(3) which satisfy [Ta, Tb] = ifabcTc. X can
be related to the quadratic Casimir ofsu(3):

C2 = 2
∑
a

TaTa (A.2)

as follows:

X =
∑
a

ξaλa = 2
∑
a

πNΛ1(Ta)πΛ1(Ta) = 1

2
(πV (C2)− πNΛ1(C2)− πΛ1(C2)).

(A.3)

Recall that the eigenvalues of the quadratic Casimirs on the highest weight representationVΛ
are given by

C2(Λ) = (Λ,Λ+ 2ρ), (A.4)

whereρ =∑Λi is the Weyl vector ofsu(3), and (, ) denotes the Killing form. It follows
that the eigenvalue ofX on the componentsVNΛ1+ν in (A.1) is

X = 1
2(C2(NΛ1+ ν)− C2(NΛ1)− C2(Λ1)) = (ν,NΛ1)+ (ν −Λ1, ρ) (A.5)



398 U. Carow-Watamura et al. / Journal of Geometry and Physics 54 (2005) 373–399

for ν = Λ1 resp.ν = Λ1− α1. Using the inner products of the fundamental weights

(Λ1,Λ1) = 2
3 = (Λ2,Λ2), (Λ1,Λ2) = 1

3, (Λ2, ρ) = 1= (Λ1, ρ) (A.6)

for su(3), we find the eigenvalues ofX as (2N3 ,−N
3 − 1), hence the characteristic equation

of X is(
X− 2N

3

)(
X+ N

3
+ 1

)
= 0. (A.7)

A.2. su(n+ 1)

ForCPn, consider the representation

V := VNΛ1 ⊗ VΛ1 = V(N+1)Λ1 ⊕ V(N+1)Λ1−α1 (A.8)

of su(n+ 1). The operatorX =∑a ξaλa is an intertwiner onV, whereπΛ1(Ta) = 1
2λa and

ξa = πNΛ1(Ta) andTa are the generators ofsu(n+ 1) which satisfy [Ta, Tb] = ifabcTc. X
can again be related to the quadratic CasimirC2 = 2

∑
a TaTa of su(n+ 1) as follows:

X =
∑
a

ξaλa = 1

2
(πV (C2)− πNΛ1(C2)− πΛ1(C2)). (A.9)

Hence the eigenvalue ofX on the componentVNΛ1+ν in (A.1) is

X = (ν,NΛ1)+ (ν −Λ1, ρ) (A.10)

for ν = Λ1 resp.ν = Λ1− α1. The eigenvalues are then
(

nN
n+1,− N

n+1 − 1
)
, and the char-

acteristic equation ofX is given by(
X− nN

n+ 1

)(
X+ N

n+ 1
+ 1

)
= 0. (A.11)
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